return

Celebratio Mathematica

R H Bing

Complete Bibliography

[1]E. F. Beck­en­bach and R. H. Bing: “Con­form­al min­im­al vari­et­ies,” Duke Math. J. 10 : 4 (1943), pp. 637–​640. MR 0009498 Zbl 0063.​00271 article

[2]E. F. Beck­en­bach and R. H. Bing: “On gen­er­al­ized con­vex func­tions,” Trans. Am. Math. Soc. 58 : 2 (September 1945), pp. 220–​230. MR 0013169 Zbl 0060.​14908 article

[3]R. H. Bing: “Col­lec­tions filling up a simple plane web,” Bull. Am. Math. Soc. 51 : 10 (1945), pp. 674–​679. MR 0013300 Zbl 0060.​40309 article

[4]R. H. Bing: “Gen­er­al­iz­a­tions of two the­or­ems of Jan­iszewski,” Bull. Am. Math. Soc. 51 : 12 (1945), pp. 954–​960. Part II was pub­lished in Bull. Am. Math. Soc. 52:6 (1946). MR 0013904 Zbl 0060.​40402 article

[5]R. H. Bing: Con­cern­ing simple plane webs. Ph.D. thesis, Uni­versity of Texas at Aus­tin, 1945. Ad­vised by R. L. Moore. See also art­icle of same title in Trans. Am. Math. Soc. 60:1 (1946). MR 2937660 phdthesis

[6]R. H. Bing: “Con­verse lin­ear­ity con­di­tions,” Am. J. Math. 68 : 2 (April 1946), pp. 309–​318. MR 0015443 Zbl 0060.​14402 article

[7]R. H. Bing: “Gen­er­al­iz­a­tions of two the­or­ems of Jan­iszewski, II,” Bull. Am. Math. Soc. 52 : 6 (1946), pp. 478–​480. Part I was pub­lished in Bull. Am. Math. Soc. 51:12 (1945). MR 0016647 article

[8]R. H. Bing: “Con­cern­ing simple plane webs,” Trans. Am. Math. Soc. 60 : 1 (July 1946), pp. 133–​148. See also Bing’s PhD thes­is (1945). MR 0016646 Zbl 0060.​40310 article

[9]R. H. Bing: “The Kline sphere char­ac­ter­iz­a­tion prob­lem,” Bull. Am. Math. Soc. 52 : 8 (1946), pp. 644–​653. MR 0016645 Zbl 0060.​40501 article

[10]R. H. Bing: “Sets cut­ting the plane,” Ann. Math. (2) 47 : 3 (July 1946), pp. 476–​479. MR 0016648 Zbl 0060.​40403 article

[11]R. H. Bing: “Ex­tend­ing a met­ric,” Duke Math. J. 14 : 3 (1947), pp. 511–​519. MR 0024609 Zbl 0030.​08003 article

[12]R. H. Bing: “Skew sets,” Am. J. Math. 69 : 3 (July 1947), pp. 493–​498. MR 0021685 Zbl 0033.​40303 article

[13]R. H. Bing: “A ho­mo­gen­eous in­decom­pos­able plane con­tinuum,” Duke Math. J. 15 : 3 (1948), pp. 729–​742. MR 0027144 Zbl 0035.​39103 article

[14]R. H. Bing: “Solu­tion of a prob­lem of R. L. Wilder,” Am. J. Math. 70 : 1 (January 1948), pp. 95–​98. MR 0023529 Zbl 0035.​10903 article

[15]R. H. Bing: “Some char­ac­ter­iz­a­tions of arcs and simple closed curves,” Am. J. Math. 70 : 3 (July 1948), pp. 497–​506. MR 0025722 Zbl 0041.​31801 article

[16]R. H. Bing: “A con­vex met­ric for a loc­ally con­nec­ted con­tinuum,” Bull. Am. Math. Soc. 55 : 12 (1949), pp. 812–​819. MR 0031712 Zbl 0035.​10801 article

[17]R. H. Bing: “Com­ple­ment­ary do­mains of con­tinu­ous curves,” Fund. Math. 36 : 1 (1949), pp. 303–​318. MR 0038063 Zbl 0039.​39501 article

[18]R. H. Bing: “Par­ti­tion­ing a set,” Bull. Am. Math. Soc. 55 : 12 (1949), pp. 1101–​1110. MR 0035429 Zbl 0036.​11702 article

[19]R. H. Bing and E. E. Floyd: “Cov­er­ings with con­nec­ted in­ter­sec­tions,” Trans. Am. Math. Soc. 69 : 3 (November 1950), pp. 387–​391. MR 0043453 Zbl 0039.​39404 article

[20]R. H. Bing: “An equi­lat­er­al dis­tance,” Am. Math. Mon. 58 : 6 (June–July 1951), pp. 380–​383. MR 0042725 Zbl 0043.​16702 article

[21]R. H. Bing: “Met­riz­a­tion of to­po­lo­gic­al spaces,” Ca­na­dian J. Math. 3 (1951), pp. 175–​186. MR 0043449 Zbl 0042.​41301 article

[22]R. H. Bing: “Con­cern­ing hered­it­ar­ily in­decom­pos­able con­tinua,” Pa­cific J. Math. 1 : 1 (1951), pp. 43–​51. MR 0043451 Zbl 0043.​16803 article

[23]R. H. Bing: “High­er-di­men­sion­al hered­it­ar­ily in­decom­pos­able con­tinua,” Trans. Am. Math. Soc. 71 : 2 (1951), pp. 267–​273. MR 0043452 Zbl 0043.​16901 article

[24]R. H. Bing: “Snake-like con­tinua,” Duke Math. J. 18 : 3 (1951), pp. 653–​663. MR 0043450 Zbl 0043.​16804 article

[25]R. H. Bing: “A char­ac­ter­iz­a­tion of 3-space by par­ti­tion­ings,” Trans. Am. Math. Soc. 70 : 1 (January 1951), pp. 15–​27. MR 0044827 Zbl 0042.​41903 article

[26]R. H. Bing: “Par­ti­tion­ing con­tinu­ous curves,” Bull. Am. Math. Soc. 58 : 5 (1952), pp. 536–​556. MR 0049550 Zbl 0048.​41203 article

[27]R. H. Bing: “The place of to­po­logy in a teach­er train­ing pro­gram” in Sym­posi­um on teach­er edu­ca­tion in math­em­at­ics (Madis­on, WI, 26–30 Au­gust 1952). 1952. 4 pages. incollection

[28]R. H. Bing: “A homeo­morph­ism between the 3-sphere and the sum of two sol­id horned spheres,” Ann. Math. (2) 56 : 2 (September 1952), pp. 354–​362. MR 0049549 Zbl 0049.​40401 article

[29]R. H. Bing: “Book re­view: ‘Gen­er­al to­po­logy’,” Bull. Am. Math. Soc. 59 : 4 (1953), pp. 410. Book by W. Si­er­piński (Uni­versity of Toronto Press, 1952). MR 1565503 article

[30]R. H. Bing: “A con­nec­ted count­able Haus­dorff space,” Proc. Am. Math. Soc. 4 : 3 (1953), pp. 474. MR 0060806 Zbl 0051.​13902 article

[31]R. H. Bing: “Ex­amples and counter­examples,” Pi Mu Ep­si­lon J. 1 (1953), pp. 311–​317. MR 0053499 article

[32]R. H. Bing: “A con­vex met­ric with unique seg­ments,” Proc. Am. Math. Soc. 4 : 1 (1953), pp. 167–​174. MR 0052763 Zbl 0050.​38503 article

[33]R. H. Bing: “Loc­ally tame sets are tame,” Ann. Math. (2) 59 : 1 (January 1954), pp. 145–​158. MR 0061377 Zbl 0055.​16802 article

[34]R. H. Bing: “Par­tially con­tinu­ous de­com­pos­i­tions,” Proc. Am. Math. Soc. 6 : 1 (1955), pp. 124–​133. MR 0071003 Zbl 0064.​16904 article

[35]R. H. Bing: “Some mono­tone de­com­pos­i­tions of a cube,” Ann. Math. (2) 61 : 2 (March 1955), pp. 279–​288. MR 0068207 Zbl 0064.​41501 article

[36]R. H. Bing: “A simple closed curve that pierces no disk,” J. Math. Pures Ap­pl. (9) 35 (1956), pp. 337–​343. MR 0081461 Zbl 0070.​40203 article

[37]R. H. Bing: “What to­po­logy is here to stay?,” pp. 25–​27 in Sum­mer in­sti­tute on set the­or­et­ic to­po­logy (Madis­on, WI, 24 Ju­ly–20 Au­gust 1955). Uni­versity of Wis­con­sin, 1957. In “Sum­mary of lec­tures and sem­inars,” re­vised 1957. incollection

[38]R. H. Bing: “De­com­pos­i­tions of \( E^3 \) in­to points and tame arcs,” pp. 41–​48 in Sum­mer in­sti­tute on set the­or­et­ic to­po­logy (Madis­on, WI, 24 Ju­ly–20 Au­gust 1955). Uni­versity of Wis­con­sin, 1957. In “Sum­mary of lec­tures and sem­inars,” re­vised 1957. incollection

[39]R. H. Bing: “Point set to­po­logy,” pp. 306–​335 in In­sights in­to mod­ern math­em­at­ics. Year­book 23. Na­tion­al Coun­cil of Teach­ers of Math­em­at­ics (Wash­ing­ton, DC), 1957. incollection

[40]R. H. Bing: “Ap­prox­im­at­ing sur­faces with poly­hed­ral ones,” pp. 49–​53 in Sum­mer in­sti­tute on set the­or­et­ic to­po­logy (Madis­on, WI, 24 Ju­ly–20 Au­gust 1955). Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1957. In “Sum­mary of lec­tures and sem­inars,” re­vised 1957. An ex­pan­ded ver­sion of this art­icle was pub­lished in Ann. Math. 65:3 (1957). incollection

[41]R. H. Bing: “The pseudo-arc,” pp. 72–​57 in Sum­mer in­sti­tute on set the­or­et­ic to­po­logy (Madis­on, WI, 24 Ju­ly–20 Au­gust 1955). Uni­versity of Wis­con­sin, 1957. In “Sum­mary of lec­tures and sem­inars,” re­vised 1957. incollection

[42]R. H. Bing: “Up­per semi­con­tinu­ous de­com­pos­i­tions of \( E^3 \),” Ann. Math. (2) 65 : 2 (March 1957), pp. 363–​374. MR 0092960 Zbl 0078.​15201 article

[43]R. H. Bing: “A de­com­pos­i­tion of \( E^3 \) in­to points and tame arcs such that the de­com­pos­i­tion space is to­po­lo­gic­ally dif­fer­ent from \( E^3 \),” Ann. Math. (2) 65 : 3 (May 1957), pp. 484–​500. MR 0092961 Zbl 0079.​38806 article

[44]R. H. Bing: “Ap­prox­im­at­ing sur­faces with poly­hed­ral ones,” Ann. Math. (2) 65 : 3 (May 1957), pp. 465–​483. Ex­pan­ded ver­sion of an art­icle in Sum­mer in­sti­tute on set the­or­et­ic to­po­logy (1957). MR 0087090 Zbl 0079.​38805 article

[45]R. H. Bing: “The cartesian product of a cer­tain non­man­i­fold and a line is \( E_4 \),” Bull. Am. Math. Soc. 64 : 3 (1958), pp. 82–​84. An ex­pan­ded ver­sion of this art­icle was pub­lished in Ann. Math. 70:3 (1959). MR 0097034 Zbl 0084.​19102 article

[46]R. H. Bing: “Ne­ces­sary and suf­fi­cient con­di­tions that a 3-man­i­fold be \( S^3 \),” Ann. Math. (2) 68 : 1 (July 1958), pp. 17–​37. MR 0095471 Zbl 0081.​39202 article

[47]R. H. Bing: “An al­tern­at­ive proof that 3-man­i­folds can be tri­an­gu­lated,” Ann. Math. (2) 69 : 1 (January 1959), pp. 37–​65. MR 0100841 Zbl 0106.​16604 article

[48]R. H. Bing: “The Cartesian product of a cer­tain non­man­i­fold and a line is \( E^4 \),” Ann. Math. (2) 70 : 3 (November 1959), pp. 399–​412. Ex­pan­ded ver­sion of an art­icle in Bull Am. Math. Soc. 64:3 (1958). MR 0107228 Zbl 0089.​39501 article

[49]R. H. Bing: “Con­di­tions un­der which a sur­face in \( E^3 \) is tame,” Fund. Math. 47 : 1 (1959), pp. 105–​139. MR 0107229 Zbl 0088.​15402 article

[50]R. H. Bing: Geo­metry, math­em­at­ics for high school. Technical report, School Math­em­at­ics Study Group, 1959. techreport

[51]R. H. Bing: “Each ho­mo­gen­eous nonde­gen­er­ate chain­able con­tinuum is a pseudo-arc,” Proc. Am. Math. Soc. 10 : 3 (June 1959), pp. 345–​346. MR 0105072 Zbl 0105.​16701 article

[52]R. H. Bing and F. B. Jones: “An­oth­er ho­mo­gen­eous plane con­tinuum,” Trans. Am. Math. Soc. 90 : 1 (1959), pp. 171–​192. MR 0100823 Zbl 0084.​18903 article

[53]R. H. Bing and M. L. Curtis: “Im­bed­ding de­com­pos­i­tions of \( E^3 \) in \( E^4 \),” Proc. Am. Math. Soc. 11 : 1 (February 1960), pp. 149–​155. MR 0117692 Zbl 0119.​18804 article

[54]R. H. Bing: Ele­ment­ary point set to­po­logy, published as Am. Math. Mon. 67 : 7, part 2 (1960). Num­ber 8 of the Her­bert Ell­s­worth Slaught Me­mori­al Pa­pers. MR 0123286 Zbl 0095.​37601 book

[55]R. H. Bing: “A simple closed curve is the only ho­mo­gen­eous bounded plane con­tinuum that con­tains an arc,” Canad. J. Math. 12 (1960), pp. 209–​230. MR 0111001 Zbl 0091.​36204 article

[56]R. H. Bing: “Tame Can­tor sets in \( E^3 \),” Pa­cific J. Math. 11 : 2 (1961), pp. 435–​446. MR 0130679 Zbl 0111.​18606 article

[57]R. H. Bing: “A sur­face is tame if its com­ple­ment is 1-ULC,” Trans. Am. Math. Soc. 101 : 2 (November 1961), pp. 294–​305. MR 0131265 Zbl 0109.​15406 article

[58]R. H. Bing and N. D. Kaz­arinoff: “On the fi­nite­ness of the num­ber of re­flec­tions that change a non­con­vex plane poly­gon in­to a con­vex one,” Mat. Pros­vesh. 6 (1961), pp. 205–​207. In Rus­si­an. article

[59]R. H. Bing: “A set is a 3 cell if its cartesian product with an arc is a 4 cell,” Proc. Am. Math. Soc. 12 : 1 (February 1961), pp. 13–​19. MR 0123303 Zbl 0111.​18702 article

[60]R. H. Bing: “A wild sur­face each of whose arcs is tame,” Duke Math. J. 28 : 1 (1961), pp. 1–​15. MR 0123302 Zbl 0101.​16507 article

[61]R. H. Bing: “Point-like de­com­pos­i­tions of \( E^3 \),” Fund. Math. 50 : 4 (1961/1962), pp. 431–​453. MR 0137104 Zbl 0109.​15503 article

[62]R. H. Bing: “De­com­pos­i­tions of \( E^3 \),” pp. 5–​21 in To­po­logy of 3-man­i­folds and re­lated top­ics (Athens, GA, 14 Au­gust–8 Septem­ber 1961). Edi­ted by M. K. Fort, Jr. Pren­tice-Hall (Engle­wood Cliffs, NJ), 1962. MR 0141088 incollection

[63]R. H. Bing: “Em­bed­ding circle-like con­tinua in the plane,” Canad. J. Math. 14 (1962), pp. 113–​128. MR 0131865 Zbl 0101.​15403 article

[64]R. H. Bing: “Each disk in \( E^3 \) is pierced by a tame arc,” Am. J. Math. 84 : 4 (October 1962), pp. 591–​599. MR 0146812 Zbl 0178.​27202 article

[65]R. H. Bing: “Ap­plic­a­tions of the side ap­prox­im­a­tion the­or­em for sur­faces,” pp. 91–​95 in Gen­er­al to­po­logy and its re­la­tions to mod­ern ana­lys­is and al­gebra (Prague, Septem­ber 1961). Aca­demia (Prague), 1962. MR 0154266 Zbl 0112.​38603 incollection

[66]R. H. Bing: “Each disk in \( E^3 \) con­tains a tame arc,” Am. J. Math. 84 : 4 (October 1962), pp. 583–​590. MR 0146811 Zbl 0178.​27201 article

[67]R. H. Bing: “Ap­prox­im­at­ing sur­faces from the side,” Ann. Math. (2) 77 : 1 (January 1963), pp. 145–​192. MR 0150744 Zbl 0115.​40603 article

[68]R. H. Bing: “Cor­rec­tion to ‘Ne­ces­sary and suf­fi­cient con­di­tions that a 3-man­i­fold be \( S^3 \),” Ann. Math. (2) 77 : 1 (January 1963), pp. 210. Cor­rec­tion to art­icle in Ann. Math. 68:1 (1958). MR 0142115 Zbl 0115.​17304 article

[69]R. H. Bing: “Em­bed­ding sur­faces in 3-man­i­folds,” pp. 457–​458 in Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians (Stock­holm, 15–22 Au­gust 1962), vol. 1. In­sti­tute Mit­tag-Leffler (Djur­sholm), 1963. MR 0176455 Zbl 0137.​17805 incollection

[70]R. H. Bing: “Re­trac­tions onto spheres,” Am. Math. Mon. 71 : 5 (May 1964), pp. 481–​484. MR 0162236 Zbl 0117.​40604 article

[71]R. H. Bing and V. L. Klee: “Every simple closed curve in \( E^3 \) is un­knot­ted in \( E^4 \),” J. Lon­don Math. Soc. 39 : 1 (1964), pp. 86–​94. MR 0161336 Zbl 0116.​40703 article

[72]R. H. Bing: “Push­ing a 2-sphere in­to its com­ple­ment,” Michigan Math. J. 11 : 1 (1964), pp. 33–​45. MR 0160194 Zbl 0117.​17101 article

[73]R. H. Bing and K. Bor­suk: “A 3-di­men­sion­al ab­so­lute re­tract which does not con­tain any disk,” Fund. Math. 54 : 2 (1964), pp. 159–​175. MR 0161312 Zbl 0118.​18002 article

[74]R. H. Bing: “The simple con­nectiv­ity of the sum of two disks,” Pa­cific J. Math. 14 : 2 (1964), pp. 439–​455. MR 0164328 Zbl 0117.​40701 article

[75]R. H. Bing and J. M. Kister: “Tam­ing com­plexes in hy­per­planes,” Duke Math. J. 31 : 3 (1964), pp. 491–​511. MR 0164329 Zbl 0124.​16701 article

[76]R. H. Bing: “Spheres in \( E^3 \),” Am. Math. Mon. 71 : 4 (April 1964), pp. 353–​364. MR 0165507 Zbl 0116.​40605 article

[77]R. H. Bing and A. Kirkor: “An arc is tame in 3-space if and only if it is strongly cel­lu­lar,” Fund. Math. 55 : 2 (1964), pp. 175–​180. MR 0170330 Zbl 0129.​15902 article

[78]R. H. Bing: “Some as­pects of the to­po­logy of 3-man­i­folds re­lated to the Poin­caré con­jec­ture,” pp. 93–​128 in Lec­tures on mod­ern math­em­at­ics, vol. 2. Edi­ted by T. L. Saaty. Wiley (New York), 1964. MR 0172254 Zbl 0126.​39104 incollection

[79]R. H. Bing: “In­equi­val­ent fam­il­ies of peri­od­ic homeo­morph­isms of \( E^3 \),” Ann. Math. (2) 80 : 1 (July 1964), pp. 78–​93. MR 0163308 Zbl 0123.​16801 article

[80]R. H. Bing: “A trans­la­tion of the nor­mal Moore space con­jec­ture,” Proc. Am. Math. Soc. 16 : 4 (1965), pp. 612–​619. MR 0181976 Zbl 0134.​40906 article

[81]R. H. Bing: Com­put­ing the fun­da­ment­al group of the com­ple­ments. Technical report 2, Wash­ing­ton State Uni­versity, 1965. techreport

[82]R. H. Bing: “Im­prov­ing the side ap­prox­im­a­tion the­or­em,” Trans. Am. Math. Soc. 116 (1965), pp. 511–​525. MR 0192479 Zbl 0129.​39701 article

[83]R. H. Bing and K. Bor­suk: “Some re­marks con­cern­ing to­po­lo­gic­ally ho­mo­gen­eous spaces,” Ann. Math. (2) 81 : 1 (January 1965), pp. 100–​111. MR 0172255 Zbl 0127.​13302 article

[84]R. H. Bing: “Map­ping a 3-sphere onto a ho­mo­topy 3-sphere,” pp. 89–​99 in To­po­logy sem­in­ar (Madis­on, WI, sum­mer 1965). Edi­ted by R. H. Bing and R. J. Bean. An­nals of Math­em­at­ics Stud­ies 60. Prin­ceton Uni­versity Press, 1966. MR 0219071 Zbl 0152.​22603 incollection

[85]To­po­logy sem­in­ar (Madis­on, WI, sum­mer 1965). Edi­ted by R. H. Bing and R. J. Bean. An­nals of Math­em­at­ics Stud­ies 60. Prin­ceton Uni­versity Press, 1966. MR 0202100 Zbl 0151.​00208 book

[86]R. H. Bing: “A hered­it­ar­ily in­fin­ite di­men­sion­al space,” pp. 56–​62 in Gen­er­al to­po­logy and its re­la­tions to mod­ern ana­lys­is and al­gebra (Prague, 30 Au­gust–4 Septem­ber 1966), vol. II. Edi­ted by J. Novák. Aca­demia (Prague), 1967. MR 0233336 Zbl 0162.​54802 incollection

[87]S. Ar­men­trout and R. H. Bing: “A tor­oid­al de­com­pos­i­tion of \( E^3 \),” Fund. Math. 60 : 1 (1967), pp. 81–​87. MR 0206925 Zbl 0145.​19702 article

[88]R. H. Bing: “Im­prov­ing the in­ter­sec­tions of lines and sur­faces,” Michigan Math. J. 14 : 2 (1967), pp. 155–​159. MR 0206927 Zbl 0149.​21001 article

[89]R. H. Bing: “Chal­len­ging con­jec­tures,” Am. Math. Mon. 74 : 1, part 2 (January 1967), pp. 56–​64. MR 0203661 Zbl 0153.​24101 article

[90]R. H. Bing: “Ra­di­al en­gulf­ing,” pp. 1–​18 in Con­fer­ence on the to­po­logy of man­i­folds (Michigan State Uni­versity, East Lans­ing, MI, 1967). Edi­ted by J. G. Hock­ing. Prindle, Weber & Schmidt (Bo­ston), 1968. MR 0238284 Zbl 0186.​57505 incollection

[91]R. D. An­der­son and R. H. Bing: “A com­plete ele­ment­ary proof that Hil­bert space is homeo­morph­ic to the count­able in­fin­ite product of lines,” Bull. Am. Math. Soc. 74 : 5 (1968), pp. 771–​792. MR 0230284 Zbl 0189.​12402 article

[92]R. H. Bing: “The elu­sive fixed point prop­erty,” Am. Math. Mon. 76 : 2 (February 1969), pp. 119–​132. MR 0236908 Zbl 0174.​25902 article

[93]R. H. Bing: “Ex­tend­ing mono­tone de­com­pos­i­tions of 3-man­i­folds,” pp. 7–​35 in Pro­ceed­ings of the Au­burn to­po­logy con­fer­ence (Au­burn, AL, 13–15 March 1969). Edi­ted by W. R. R. Tran­sue. Au­burn Uni­versity, 1969. Ded­ic­ated to F. Bur­ton Jones on the oc­ca­sion of his 60th birth­day. See also art­icle in Trans. Am. Math. Soc. 149:2 (1970). MR 0370592 Zbl 0257.​57002 incollection

[94]R. H. Bing: “Re­trac­tions onto ANR’s,” Proc. Am. Math. Soc. 21 : 3 (June 1969), pp. 618–​620. MR 0239583 Zbl 0176.​20102 article

[95]R. H. Bing: “Ex­tend­ing mono­tone de­com­pos­i­tions of 3-man­i­folds,” Trans. Am. Math. Soc. 149 : 2 (1970), pp. 351–​369. See also art­icle in Pro­ceed­ings of the Au­burn to­po­logy con­fer­ence (1969). MR 0263051 Zbl 0205.​53401 article

[96]R. H. Bing: To­po­logy of 3-man­i­folds (Lara­m­ie, WY, 24–28 Au­gust 1970). Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1970. Notes dis­trib­uted in con­junc­tion with the Col­loqui­um Lec­tures at the sev­enty-fifth sum­mer meet­ing of the AMS. booklet

[97]R. H. Bing: “The mono­tone map­ping prob­lem,” pp. 99–​115 in To­po­logy of man­i­folds (Uni­versity of Geor­gia, Athens, GA, 11–22 Au­gust 1969). Edi­ted by J. C. Cantrell and C. H. Ed­wards. Markham Math­em­at­ics Series. Markham (Chica­go), 1970. MR 0275379 Zbl 0283.​57004 incollection

[98]R. H. Bing and J. M. Mar­tin: “Cubes with knot­ted holes,” Trans. Am. Math. Soc. 155 : 1 (1971), pp. 217–​231. MR 0278287 Zbl 0213.​25005 article

[99]R. H. Bing and J. M. Mar­tin: “Mono­tone im­ages of \( E^3 \),” pp. 55–​77 in The pro­ceed­ings of the first con­fer­ence on mono­tone map­pings and open map­pings (SUNY, Bing­hamton, NY, 8–11 Oc­to­ber 1970). Edi­ted by L. F. McAuley. SUNY Bing­hamton, 1971. MR 0281175 Zbl 0239.​57003 incollection

[100]R. H. Bing: “Mod­els for \( S^3 \),” pp. 1–​31 in Vis­it­ing schol­ars’ lec­tures (Texas Tech Uni­versity, Lub­bock, TX, 1970–1971). Edi­ted by G. L. Bald­win and J. D. Tar­wa­ter. Math­em­at­ics Series 9. Texas Tech Uni­versity (Lub­bock, TX), 1971. MR 0358782 Zbl 0239.​57004 incollection

[101]R. H. Bing: “Award for dis­tin­guished ser­vice to Pro­fess­or Ray­mond L. Wilder,” Am. Math. Mon. 80 : 2 (February 1973), pp. 117–​119. MR 1536974 article

[102]R. H. Bing, W. W. Bled­soe, and R. D. Mauld­in: “Sets gen­er­ated by rect­angles,” Pa­cific J. Math. 51 : 1 (1974), pp. 27–​36. MR 0357124 Zbl 0261.​04001 article

[103]R. H. Bing: “An un­usu­al map of a 3-cell onto it­self,” pp. 15–​33 in To­po­logy con­fer­ence (Vir­gin­ia Poly­tech­nic In­sti­tute and State Uni­versity, Blacks­burg, VA, 22–24 March 1973). Edi­ted by H. F. Dick­man, Jr. and P. Fletch­er. Lec­ture Notes in Math­em­at­ics 375. Spring­er (Ber­lin), 1974. MR 0358783 Zbl 0291.​57004 incollection

[104]R. H. Bing: “To­po­logy, gen­er­al,” pp. 509–​514 in En­cyc­lopæ­dia Brit­an­nica, vol. 18. En­cyc­lopæ­dia Brit­an­nica (Chica­go), 1974. incollection

[105]R. H. Bing: “To­po­lo­gia con­juntista,” pp. 126–​132 in Uni­versitas en­ciclo­pe­dia temát­ica, vol. X. Sal­vat (Bar­celona), 1974. incollection

[106]R. H. Bing: “Ver­tic­al gen­er­al po­s­i­tion,” pp. 16–​41 in Geo­met­ric to­po­logy (Park City, UT, 19–24 Feb­ru­ary 1974). Edi­ted by L. C. Glaser and T. B. Rush­ing. Lec­ture Notes in Math­em­at­ics 438. Spring­er (Ber­lin), 1975. MR 0394685 Zbl 0331.​57008 incollection

[107]R. H. Bing: “Pulling back feel­ers,” pp. 245–​266 in Con­ve­gno sulla to­po­lo­gia in­siemist­ica e gen­erale [Con­fer­ence on point-set and gen­er­al to­po­logy] (IN­DAM, Rome, 1973). Sym­po­sia Math­em­at­ica XVI. Aca­dem­ic Press (Lon­don), 1975. MR 0400231 Zbl 0322.​57001 incollection

[108]R. H. Bing: “Set the­ory,” pp. 254–​255 in Mc­Graw-Hill en­cyc­lo­pe­dia of sci­ence and tech­no­logy, 4th edition. Mc­Graw-Hill (New York), 1977. incollection

[109]R. H. Bing and M. Star­bird: “Su­per tri­an­gu­la­tions,” Pa­cific J. Math. 74 : 2 (1978), pp. 307–​325. MR 0478170 Zbl 0384.​57005 article

[110]R. H. Bing and M. Star­bird: “Lin­ear iso­top­ies in \( E^2 \),” Trans. Am. Math. Soc. 237 (March 1978), pp. 205–​222. MR 0461510 Zbl 0397.​57018 article

[111]R. H. Bing: “Award for dis­tin­guished ser­vice to Pro­fess­or R. D. An­der­son,” Am. Math. Mon. 85 : 2 (February 1978), pp. 73–​74. article

[112]R. H. Bing and M. Star­bird: “A de­com­pos­i­tion of \( S^3 \) with a null se­quence of cel­lu­lar arcs,” pp. 3–​21 in Geo­met­ric to­po­logy (Athens, GA, 1–12 Au­gust 1977). Edi­ted by J. C. Cantrell. Aca­dem­ic Press (New York), 1979. MR 537722 Zbl 0479.​57004 incollection

[113]R. H. Bing: “Sets in \( R^3 \) with the two-disk prop­erty,” pp. 43–​44 in Pro­ceed­ings of in­ter­na­tion­al con­fer­ence on geo­met­ric to­po­logy (In­sti­tute of Math­em­at­ics, Warsaw, 24 Au­gust–2 Septem­ber 1978). Edi­ted by K. Bor­suk and A. Kirkor. Pol­ish Sci­entif­ic Pub­lish­ers (Warsaw), 1980. Zbl 0463.​57002 incollection

[114]R. H. Bing: “Met­riz­a­tion prob­lems,” pp. 3–​16 in Gen­er­al to­po­logy and mod­ern ana­lys­is (Uni­versity of Cali­for­nia, River­side, CA, 28–31 May 1980). Edi­ted by L. F. McAuley and M. M. Rao. Aca­dem­ic Press (New York), 1981. MR 619024 Zbl 0527.​54027 incollection

[115]R. H. Bing: The geo­met­ric to­po­logy of 3-man­i­folds. AMS Col­loqui­um Pub­lic­a­tions 40. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1983. MR 728227 Zbl 0535.​57001 book

[116]Con­tinua, de­com­pos­i­tions, man­i­folds (Uni­versity of Texas, Aus­tin, TX, sum­mer 1980). Edi­ted by R. H. Bing, W. T. Eaton, and M. P. Star­bird. Uni­versity of Texas Press (Aus­tin, TX), 1983. MR 711973 book

[117]R. H. Bing: “Wild sur­faces have some nice prop­er­ties,” Michigan Math. J. 33 : 3 (1986), pp. 403–​415. MR 856532 Zbl 0609.​57005 article

[118]R. H. Bing: “De­com­pos­i­tions that des­troy simple con­nectiv­ity,” Illinois J. Math. 30 : 4 (1986), pp. 527–​535. MR 857209 Zbl 0608.​57012 article

[119]S. Singh: “R. H. Bing (1914–1986): A trib­ute,” pp. 5–​8 in Spe­cial volume in hon­or of R. H. Bing (1914–1986), published as To­po­logy Ap­pl. 24 : 1–​3 (1986). MR 872474 incollection

[120]Spe­cial volume in hon­or of R. H. Bing (1914–1986), published as To­po­logy Ap­pl. 24 : 1–​3. Issue edi­ted by S. Singh and T. L. Thick­stun. El­sevi­er Sci­ence B.V. (Am­s­ter­dam), 1986. MR 872473 book

[121]R. D. An­der­son and C. E. Bur­gess: “R. H. Bing: Oc­to­ber 20, 1914–April 28, 1986,” No­tices Am. Math. Soc. 33 : 4 (1986), pp. 595–​596. MR 847220 article

[122]L. Why­burn: “R. H. Bing 1949–50,” pp. 177–​180 in Pro­ceed­ings of the 1987 to­po­logy con­fer­ence (Birm­ing­ham, AL, 1987), published as To­po­logy Proc. 12 : 1. Issue edi­ted by G. Gru­en­hage, D. Ben­nett, and L. Mohler. Au­burn Uni­versity (Birm­ing­ham, AL), 1987. MR 951715 Zbl 0643.​01015 incollection

[123]F. B. Jones: “R. H. Bing,” pp. 181–​186 in Pro­ceed­ings of the 1987 to­po­logy con­fer­ence (Birm­ing­ham, AL, 1987), published as To­po­logy Proc. 12 : 1. Issue edi­ted by G. Gru­en­hage, D. Ben­nett, and L. Mohler. Au­burn Uni­versity (Birm­ing­ham, AL), 1987. MR 951716 Zbl 0643.​01014 incollection

[124]M. Brown: “The math­em­at­ic­al work of R. H. Bing,” pp. 1–​25 in Pro­ceed­ings of the 1987 to­po­logy con­fer­ence (Birm­ing­ham, AL, 1987), published as To­po­logy Proc. 12 : 1. Issue edi­ted by G. Gru­en­hage, D. Ben­nett, and L. Mohler. Au­burn Uni­versity (Birm­ing­ham, AL), 1987. MR 951703 Zbl 0661.​01017 incollection

[125]S. Singh: “Pub­lic­a­tions of R. H. Bing clas­si­fied by the year,” pp. 27–​37 in Pro­ceed­ings of the 1987 to­po­logy con­fer­ence (Birm­ing­ham, AL, 1987), published as To­po­logy Proc. 12 : 1. Issue edi­ted by G. Gru­en­hage, D. Ben­nett, and L. Mohler. Au­burn Uni­versity (Birm­ing­ham, AL), 1987. MR 951704 Zbl 0643.​01016 incollection

[126]R. H. Bing: “Shrink­ing without length­en­ing,” To­po­logy 27 : 4 (1988), pp. 487–​493. MR 976590 Zbl 0673.​57011 article

[127]R. H. Bing: Col­lec­ted pa­pers. Edi­ted by S. Singh, S. Ar­men­trout, and R. J. Dav­er­man. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1988. In two volumes. MR 950859 Zbl 0665.​01012 book

[128]M. Star­bird: “R. H. Bing’s hu­man and math­em­at­ic­al vi­tal­ity,” pp. 453–​466 in Hand­book of the his­tory of gen­er­al to­po­logy (San Ant­o­nio, TX, 1993), vol. 2. Edi­ted by C. E. Aull and R. Lowen. His­tory of To­po­logy 2. Kluwer Aca­dem­ic (Dordrecht), 1998. MR 1795160 Zbl 0932.​01042 incollection